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Abstract—A synthesis procedure based on a distributed pa-
rameter model for both narrow-band and broad-band microwave
filters is presented. The frequency response of the filter is de-
scribed in terms of the characteristic polynomial T2; = S11/521
where Sy; and Sp; are the scattering parameters of the filter.
Starting from the desired polynomial T3, the design scheme di-
rectly yields the scattering parameters of the various junctions
and the length of the resonators. On the basis of this technique,
a Chebyshev-type 8 pole E-plane filter has been designed and
built. The excellent agreement between the predicted and the
measured data confirm the validity of this synthesis procedure.

1 Introduction

In the past [1]-[9] and in recent years [10]-[16] a great deal
of effort has been devoted to the design of microwave filters.
Most of the synthesis techniques that have been developed
are based on a low-pass prototype, from which the corre-
sponding microwave filter is obtained. Often, in the case
of broad-band filters, a numerical optimization procedure is
then necessary to satisly the filter specifications.

The synthesis scheme presented in this paper, is based on
a distributed parameter model of the filter. Asis well known,
an N-resonator microwave filter can be seen as a cascade of
N + 1 junctions interconnected by N transmission lines cor-
responding to the fundamental waveguide mode. The N 41
junctions (i.e. irises, thick slots, E-plane septa, etc.) are
conveniently described in terms of their scattering matrices.
Starting from this distributed model, this synthesis proce-
dure directly yields the scattering parameters of the various
junctions, which can be obtained by any kind of discontinu-
ity. I'rom this point of view coaxial-waveguide transitions
are included in the definition of the input/output junctions.
The procedure is based on the properties of the character-
istic polynomial, which is the element T3 = Sy1/Sa21 of the
transmission matrix, with Sy; and Sy being the scattering
parameters of the filter. An arbitrary frequency response
of the filter can be obtained by suitably positioning the Ty,
roots, which correspond to the reflection zeros of the filter.

Tl’le synf,hesized frequency response fa;ls {50 comple{;ely
match the specifications for some broad-band filters. This is
mainly due to the frequency dispersion of the S-parameters,
the multimodal interactions between the various junctions
and the losses of the material, all neglected in the synthe-
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Figure 1: Two-port network equivalent circuit of a N-
resonator filter.

sis procedure. However, the degradations introduced by all
these causes can be approximately described, at least in the
frequency range of interest, as produced by a suitable lin-
ear system, whose characteristics are obtained by a system
indentification technique. This allows to modify the design
goal in such a way that the synthesized response meets per-
fectly the specifications.

2 Synthesis procedure

As is shown in Fig.l, a N-pole microwave filter can be
described by an equivalent two port network, where S(*),
(k = 0 ~ N) is the scattering matrix of the k-th junction
and Iy, (k =1 ~ N) the length of the transmission line cor-
responding to the k-th resonator. Consider the transmission
matrix of the k-th discontinuity. In the case of a reciprocal
and lossless structure, this matrix can be written as follows:
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where cos v = |[SU)|, sin vy = || and ¢f;’) are the phases
of the scattering parameter S,-f ) and A,S’fjk ) is the determi-
nant of S®), If B is the propagation constant of the waveg-
uide of the length [, which constitutes the k-th cavity, the
corresponding transmission matrix can be written as:

1 0
k) . @Bl [ ] (2)

0 e~228

According to the expressions given in (1) and (2), the trans-
mission matrix of the whole filter can be expressed (apart
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[rom phase terms) as follows:
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where one has introduced the complex variable z, defined as:

s exp{in} = —exp{j[28l — (6% + 48N} . (@)

The unknown phase term 1, has been introduced in order to
account for the different phase behaviour of the resonators
aud to maintain a certain degree of generality in the synthesis
procedure. Note that z is not a function of the index k& and
its phase is related to the frequency through the propagation
constant £ and the phases of the scattering parameters of the
junctions.

From (3) it is easy to recognize that the elements of the
transmission matrix T are N-degree polynomials in the com-
plex variable z7!. In particular:

N
Tn(z) = Z ag Z_k H
k=0

CSCyg 2

Tzl(Z) =

The element Ty = Si1/S%; is the characteristic polynomial
of the filter, and efficiently describes the frequency response
both in the pass-band (where Ty ~ S1;) and in the stop-
band (where Ty ~ 1/521). The polynomial T3 can be inter-
preted as the array factor of a linear distribution of radiators
or, alternatively, as the response of a digital filter. According
to the first interpretation, the reflection coefficient of the fil-
ter in the pass-band corresponds to the level of the secondary
lobes of the array factor, whereas the maximum insertion loss
in the stop-band corresponds to the main lobe level. Ac-
cording to the second interpretation, the polynomial T can
be identified as the Z-transform of the impulse response of
a FIR digital filter. In both cases well established synthesis
techniques can be used to obtain the desired array factor [17]
or the FIR transfer function [18]. Once the polynomial T3,
has been defined, according to the required specifications, an
extraction procedure is applied to determine the scattering
matrix of the various junctions.

In order to carry out the extraction procedure it is also
necessary to know the element Ty, = 1/Sq; of the transmis-
sion matrix of the filter.

For this purpose one recalls that, in the case of a reciprocal
and lossless structure, the diflerence between the squared

magnitude of Ty, and Ty is one for |z| = 1, i.e. for real
values of frequency:
Tn()? =14 Tul® Viz=1. (6)

This relationship can be analitically continued in the whole
complex plane z by noting that z* = z~* on the circle |z| = 1.
Ilence, the following relationship holds for any z:

Tu(z) Tl*l(l/:*) =1 + TQ](Z) T;l(l/Z*) Vz. (7)

On the basis of this equation, T1;1(z) can be determined from
a specified Ty (z). It is in fact easy to recognize that the 2N

roots of the first member of (7) occur in pairs {ay,1/a}},
where oy are the N roots of the polynomial T},. The iden-
tification of the ay is very simple noting that they are the
poles of S3; and hence lie inside the circle |z| = 1 because of
the stability condition. The magnitude of the N-th degree
coefficient (an) can be determined by evaluating (7), for ex-
ample in z = —1, while its phase, as shown in what follows,
must be equal to that of the coefficient of the polynomial 79,
with the same degree (bN)

Once the polynomials T Ve T Vare determined (the su-
perscript [V] has been added to ernphasize that they refer to
the whole structure consisting of N cavities), it is possible
from (3) to write the following relationship:

[ T[N } { cscyy cotyy z71 eIV } [ T[N——l] J
o] V . N ’
75 cotyny cscyny 271 emI¥N T

(8)

where the polynomials THV‘” and Tflv_” correspond to the
structure consisting of the first N--1 cavities. By solving the
linear system (8)

[ T[N 1] ] [ CSCYN —cot vy 1 [ T1[11V] }
N-1] | = ) . N
12{1 ] —cotyn z €IV cscyy z eIV i
(9)
the following relationships can be obtained from among the
coeflicients of the four polynomials involved:

ach‘ll = CSCYN aECN] — cot v bg\”
(10)
bLN“I] = [—cotyn aﬂ]l + cscyn bgi]l] eIV

Since the polynomials T[N U and T[N_” are of degree N—1
(in the variable z271), the coefficients a[N Y and o must
be zero. By enforcing these condltlons two relationships
are obtained, both giving the magnitude of Sy; of the N-th
discontinuity:

|S[N]] = cosyy = 91'\12,—] = égvi (1)
1 ] IN = bE(,V] = agv] .

Since this quantity must be real and ]positive, the phase of
ai! must be chosen equal to that of bl reviously stated
an qual to that of bl ", as previously stated.
Under this condition, it can be shown from (7), that the
second ratio always concides with the first.
The procedure described can be iterated to obtain the Sy
parameter of the (N — 1)-th discontinuity as follows:

(N-1) (M [N]
(N1, _ _ b _ —cosyna;  + b ¥
ISty I =cosyn1 = JNU T N o V] e’
0 0 IN b
(12)

Froin (12) the role played by the phase term 155 introduced
in (4) clearly appears. Its value must in fact be chosen so
that the ratio (12) is real and positive.

On the basis of the previous considerations, the following
iterative extraction scheme of the quantities v, € [0,7/2],
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(k =0~ N) and ¢, (k =1~ N), can be identified:
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As in all extraction procedures (see for example [19]), par-
ticular attention must be paid to the numerical implementa-
tion of the algorithm. If the number of cavities increases and
the bandwidth decreases so that the range of the polynomial
7y on the circle |z| = 1 becomes large, round off errors can
greatly affect the extraction procedure, expecially in the case
of the last cells. In these cases the use of multiple precision
can be necessary.

As far as the computation of the length of the cavities
and the correspondence between electrical and angular band-
width is concerned, it is necessary to refer to the expression
of the phase of the complex variable z defined in (4):

0 = 7+ 28(w) b — 2u(w) — (13)

where, for brevity, the following variable has been intro-
duced:

Br(w) = 3 [ (w) + $(w)] (14)

If w; and w, are the angular frequencies of the two limits of
the pass-band which correspond to the angles §; = 7 —Afp/2
and 0, = m + AOp/2 respectively, from (13) one obtains:

_ it k(wr) + Sr(we)
"= T B 4 Blen) (15)

and for the angular bandwidth:

Alp = 2[B(w2) = Blwn)ll = 2$(w2) — [$(w1)] (16)

where /and & are the mean values of the quantities Iy and ¢y,
respectively. From these two expressions it is clear that, for
the definiton of the angular bandwidth, necessary to identify
the polynomial T3 that must be synthesized, one has to

estimate ¢(wy) and ¢(wy).

o EXTRACTION PROCEOURE
i> * DEFINITION OF THE GEOMETRY :'\>
* FULLWAVE ANALYSIS

Figure 2: Linear system interpretation of the synthesis pro-
cess.

In some cases, degradation effects, such as the {requency
dispersion of the S-parameters, the multimodal interaction
between the junctions and the losses are significant so that
the frequency response obtained by the full-wave analysis
does not completely match the specifications. These degra-
dations can be described in terms of a linear system as shown
in Fig.2. The key point of the method is to determine the
fitting polynomial of the full-wave analysis so that, as least
in the band of interest, the frequency response given by the
full-wave analysis, can be described as follows:

S N -k
T~ Ca) =2z (17)
521 k=0

It is worthwhile to observe that the sequences of the coeffi-
cients {bx} and {cx} given in (5) and (17) respectively, can
be interpreted as the discrete spectra of the periodic signals
T21(8) and C(0). As a consequence, one can write

cr=hrbp withk=0~N (18)

where the sequence {hi} defines the transfer function of the
linear system of Fig.2. On the basis of this identification it is
possible to characterize the linear system and then to define
a new polynomial T3; that must be synthesized, in order to
obtain the desired frequency response C{tr9¢9)():

o) = a9 jp with k=0~ N (19)

3 Results

An example of application of the previously presented syn-
thesis procedure is reported in this section. The case refers
to the design of an equiripple 8-pole E-plane metal insert fil-
ter in a brass WR90 waveguide (insert thickness 0.52 mm).
The bandwidth of 800 MHz is centered at 11. GHz, with
a return loss of 25 dB. Starting from a Chebyshev poly-
nomial, the synthesis procedure yielded the following data:
~x = {50.7778,19.9927,13.8806,12.7208,12.4859} deg, with
k=0~ 4; 4 = vg—p with £ = 5 ~ 9 and ¢y = 0
with £ = 1 ~ 8. The full-wave analysis of the structure
selected by the synthesis did not completely match the spec-
ifications because of the previously mentioned degradations
effects. Hence, the linear system identification of the whole
process allowed one to modify the polynomial T3; that had
to be synthesised and the following new data set was ob-
tained: g = {48.6337,19.1474,14.0873,13.0088,12.7972}
deg, with k = 0 ~ 4; 7 = s with £ = 5 ~ 9 and
Py = {1.6558,2.2345,2.4179,2.4580} deg, with k = 1 ~ 4;
P = g with & = 5 ~ 8. One should note that this
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Figure 3: Eight-pole E-plane metal-insert WR90 waveg-
uide filter. Measured transmission and reflection coeflicients
{dashed line). Full-wave analysis (solid line).

second synthesis step yielded non zero values of ¢ to com-
pensate the different behaviour of the phase of the reflec-
tion coeflicients Sl(f) of the junctions. The geometry of
the whole filter was therefore selected as follows: septum
lengths s; = sg = 1.083 mm, s, = sg = 6.609 mm,
s3 = 87 = 8.514 mm, s4 = s¢ = 9.008 mm, ss = 9.110 mm;
resonator lengths ly = lg = 11.515 mm, I, = {7 = 11.529 mm,
Iy =1y =I5 = lg = 11.527 mm. Fig.3 shows the full-wave
analysis of this configuration (dashed line) and the excellent
agreement between the measured and predicted results. The
analysis was carried oul using the moment method where the
resistivity of the brass was taken into account in the appli-
calion of the boundary conditions. It should be noted that,
even though the svnthesis procedure does not deal with loss
devices, the linear system identification process allows one to
take them into account, thus yielding an excellent prediction
of the insertion losses, as shown in Fig.3.
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